Total Synthesis of Gracilioether F: Development and Application of Lewis Acid Promoted Ketene-Alkene [2+2] Cycloadditions and Late Stage C-H Oxidation

Christopher M. Rasik and M. Kevin Brown Angew. Chem. Intd. Ed. **2014**, 53, 1-6

Introduction

- Isolated from marine sponge *Plakinastrella mamillaris* in 2012
- No known biological activity
- Other members show antimalarial activity
- No prior syntheses of any members

Gracilioether E

Gracilioether F

Gracilioether G

Tetrahedron **2012**, *68*,10157-10163

Gracilioether H

Gracilioether I

Retrosynthesis

Previous Generation of Ketenes in Presence of Lewis Acids

Pd-Mediated Ketene-Alkene [2+2]

- Significant improvement in yield over thermal reaction
- Opposite diastereomer of thermal reaction
- Very limited scope

Tetrahedron. 2001, 57, 2237-2246

- Sc(OTf)₃, Zn(OTf)₂, FeCl₃, SnCl₄, SiCl₄, BCl₃, AgOTf, Sn(OTf)₂, Mg(ClO₄)₂, CuOTf, AgClO₄, In(OTf)₃, AlMe₃ all gave no product
- Opposite diastereomer from thermal [2+2]

J. Am. Chem. Soc. 2013, 135, 1673-1676

J. Am. Chem. Soc. 2013, 135, 1673-1676 Org. Lett. 2014, 16, 5168-5171

- Alkene from less hindered side in thermal reaction
- Lewis acid has steric clash with Ph; leads to selectivity
- Rotational barrier for Ph-ketene bond reduced from 3.6 to 1.7 kcal/mol

J. Am. Chem. Soc. 2013, 135, 1673-1676 Org. Lett. 2014, 16, 5168-5171

- Alkene from less hindered side in thermal reaction
- Lewis acid has steric clash with Ph; leads to selectivity
- Rotational barrier for Ph-ketene bond reduced from 3.6 to 1.7 kcal/mol

J. Am. Chem. Soc. **2013**, *135*, 1673-1676 Org. Lett. **2014**, *16*, 5168-5171

Retrosynthesis

Development of [2+2] for Gracilioether F

New Strategy for [2+2]

New Strategy for [2+2]

Synthesis

Synthesis (cont'd.)

C-H Oxidation Development

F₃C

C-H Oxidation Development

Conclusions

- Gracilioether F was synthesized in 8 steps in 0.35% yield
- Features a unique Lewis acid promoted ketene-alkene
 [2+2] cycloaddition and a late stage C-H oxidation
- Yield is disappointing
- C-H oxidation is very impractical